organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

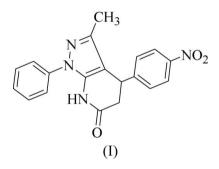
Hong Jiang, Shu-Jiang Tu* and Song-Lei Zhu

Department of Chemistry, Xuzhou Normal University, Xuzhou 221116, People's Republic of China

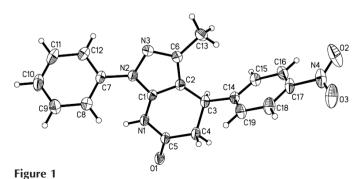
Correspondence e-mail: laotu2001@263.net

Key indicators

Single-crystal X-ray study T = 193 K Mean σ (C–C) = 0.003 Å R factor = 0.062 wR factor = 0.154 Data-to-parameter ratio = 16.0


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

3-Methyl-4-(4-nitrophenyl)-6-oxo-1-phenyl-4,5-dihydropyrazolo[3,4-*b*]pyridine


The title compound, $C_{19}H_{16}N_4O_3$, was synthesized by the reaction of 5-amino-3-methyl-1-phenylpyrazole with 4-nitrobenzaldehyde and Medrum's acid in glycol under microwave irradiation. X-ray crystal structure analysis reveals that the dihydropyridine ring adopts a distorted half-chair conformation. In the crystal structure, the molecules exist as $N-H\cdots O$ hydrogen-bonded dimers.

Comment

The dihydropyrazolo[3,4-*b*]pyridine system has many interesting biological and pharmacological properties, such as vasodilating and antihypertension activities, and also produces a prophylactic effect as a calcium antagonist in stroke-prone spontaneously hypertensive symptoms (Sekikawa *et al.*, 1973; Kuczynski *et al.*, 1979; El-Dean *et al.*, 1991). As part of our program aimed at employing microwave irradiation for the preparation of heterocyclic compounds (Tu *et al.*, 2004), we have recently synthesized dihydropyrazolo[3,4-*b*]pyridine derivatives under microwave irradiation. We report here the crystal structure of the title compound, (I).

The dihydropyridine ring adopts a distorted half-chair conformation (Fig. 1). The dihedral angle between the planes of the pyrazole ring and the attached phenyl ring is $50.0 (1)^{\circ}$.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Received 17 May 2005

Accepted 6 June 2005

Online 10 June 2005

The crystal packing shows that the molecules exist as $N - H \cdots O$ hydrogen-bonded dimers (Table 1). The molecular packing is further stabilized by $C - H \cdots O$ interactions (Fig. 2).

Experimental

Compound (I) was prepared by the reaction of 5-amino-3-methyl-1phenylpyrazole (2 mmol) with 4-nitrobenzaldehyde (2 mmol) and Medrum's acid (2 mmol) in glycol (1 ml) under microwave irradiation for 6 min (yield 80%, m.p. 490–491 K). Single crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution (95%).

Crystal data

$C_{10}H_{16}N_4O_3$	$D_{\rm r} = 1.375 {\rm Mg m}^{-3}$
$M_r = 348.36$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 2111
a = 7.846 (5) Å	reflections
b = 16.758 (14) Å	$\theta = 3.1-27.5^{\circ}$
c = 12.940 (15) Å	$\mu = 0.10 \text{ mm}^{-1}$
$\beta = 98.374 \ (12)^{\circ}$	T = 193 (2) K
$V = 1683 (3) \text{ Å}^3$	Block, yellow
Z = 4	$0.39 \times 0.30 \times 0.28 \text{ mm}$

Data collection

Rigaku Mercury CCD area-detector
diffractometer
ω scans
Absorption correction: multi-scan
(Jacobson, 1998)
$T_{\min} = 0.964, T_{\max} = 0.974$
18328 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.062$ $wR(F^2) = 0.154$ S = 1.133850 reflections 240 parameters H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0624P)^{2} + 0.765P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.44$ e Å⁻³

3850 independent reflections 3234 reflections with $I > 2\sigma(I)$

 $R_{\rm int}=0.031$

 $\theta_{\rm max} = 27.5^\circ$

$$\begin{split} h &= -10 \rightarrow 10 \\ k &= -21 \rightarrow 21 \\ l &= -15 \rightarrow 16 \end{split}$$

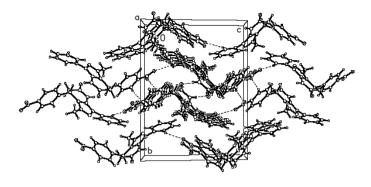

 $\Delta \rho_{\rm min} = -0.34 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C4-H4A\cdots O3^{i}$	0.99	2.59	3.465 (5)	148
$C12-H12\cdots O3^{ii}$	0.95	2.58	3.285 (4)	131
C16-H16···O2 ⁱⁱⁱ	0.95	2.53	3.437 (3)	160
$N1 - H1 \cdots O1^{iv}$	0.94 (2)	1.87 (2)	2.814 (3)	177 (2)

Symmetry codes: (i) -x + 1, -y + 1, -z + 2; (ii) x, y, z - 1; (iii) -x, -y + 1, -z + 2; (iv) -x + 2, -y + 1, -z + 1.

Figure 2

The molecular packing of (I), viewed along the a axis. Dashed lines indicate hydrogen bonds.

The H atom of the NH group was located in a difference Fourier map and was refined isotropically. All other H atoms were placed in idealized positions and allowed to ride on their parent atoms, with C–H distances in the range 0.95–1.00 Å, and with $U_{\rm iso}({\rm H}) = 1.5U_{\rm eq}({\rm C})$ for methyl H atoms and $1.2U_{\rm eq}({\rm C})$ for others.

Data collection: *CrystalClear* (Rigaku, 1999); cell refinement: *CrystalClear*; data reduction: *CrystalStructure* (Rigaku/MSC, 2003); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

The authors thank the Natural Science Foundation of China (grant No. 20372057), the Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province (grant No. 01AXL 14) and the Open-End Fund of the Key Experiments of Organic Synthesis of Jiangsu Province (S8109111) for financial support.

References

- El-Dean, A. M. K., Atalla, A. A., Mohamed, T. A. & Geies, A. A. (1991). Z. Naturforsch. Teil B, 46, 541–546.
- Jacobson, R. (1998). Private communication to the Rigaku Corporation.
- Kuczynski, L., Mrozikiewic, A., Banaszkiewicz, W. & Poreba, K. (1979). J. Pharm. Pharmacol. **31**, 217–225.
- Rigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2003). CrystalStructure. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
- Sekikawa, I., Nishie, J., Tono-oka, S., Tanaka, Y. & Kakimoto, S. (1973). J. Heterocycl. Chem. 10, 931–932.
- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Tu, S. J., Fang, F., Zhu, S. L., Li, T. J., Zhang, X. J. & Zhuang, Q. Y. (2004). Synlett, pp. 537–539.